
 

 

  
Abstract— This paper deals the effect of the periodical 

grounding of the shield wire in multiconductor power lines. The 
grounding of the shield wire is usually realized in order to prevent 
direct lightning of the power wire or the mitigate the induced 
overvoltages. However, this operation introduces a filtering property 
in the frequency behavior of the transmission line, which can be 
clearly observed in the characteristic impedance. It is worth to 
observe that, even if the grounding is performed just on the shield 
wire, the filtering property can be observed also on the phase wires. 
The paper also shows a methodology to deal with problems mixing 
concentrated and distributed parameters equations. 
 

Keywords—Transmission lines, characteristic impedance, Non-
symmetric Algebraic Riccati Equation, ladder network.  

I. INTRODUCTION 

OWER transmission lines are essential components of all 
the modern electric and electronic systems. Its analysis is a 

classical electromagnetic topic [1-3] and is included in several 
academic courses. In these cases, the transmission line is 
usually modeled as an infinite set of conductor of different 
cross-section, eventually interfering with some media. This 
configuration easily allows to define and evaluate some per 
unit length parameters (inductance, capacitance, resistance) 
and to model the transmission line in terms of equivalent 
circuits. In this model, an essential parameter is represented by 
the characteristic impedance of the line, defined as the value of 
impedance to use as termination of the transmission line in 
order to make it looking like an infinite one, i.e. there are no 
reflection at the termination. 

In some practical situation, some conductors may be 
grounded in order to improve the line performance [4-5]. In 
power lines, the shield wire may be periodically connected to 
ground, aiming at intercepting the (direct) lightning strokes 
and avoiding the fault of the line due to an excessive 
overvoltage on the power wires. In distribution lines, 
periodically grounded shield wires may be still useful reducing 
induced voltages from external electromagnetic fields caused 
by indirect lightning [6]. 

In these cases, the periodical grounding has an additional 
consequence in the line behavior, that is a filtering effect at 
specific predictable frequencies. This aspect, not adequately 
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discussed in literature, can positively enhance the line 
performance if the grounding is properly designed. Moreover, 
it is possible to observe that, even if just the shield wire is 
grounded, the filtering effect occurs on the power conductor 
too. 

This aspect can be clearly observed in the frequency 
behavior of the characteristic impedance. However, even this 
parameter is affected by the presence of the periodical 
grounding and a proper method to compute has to be adopted, 
involving the solution of a Non-symmetric Algebraic Riccati 
Equation (NARE) [7-8]. This kind of equation occurs in 
several mathematical and technical problems, so the proposed 
solution can be useful for a broad class of problems [9-17]. 

Finally yet importantly, the considered model involves both 
distributed and concentrated parameters elements. This is a 
complex situation, appearing in different kind of problems [18-
24], and the proposed method is valuable by this point of view, 
too. 

II. COMPUTATION OF THE CHARACTERISTIC IMPEDANCE 

The reference problem is shown in Fig. 1: a multiconductor 
transmission line (MTL) has several conductors, and part of 
them are periodically connected to ground through a specific 
resistance. 

 

... ...

... ...

... ...s non-grounded wires

p grounded wires

MTL cell

 
Fig. 1 Scheme of the MTL cells with the periodical grounding. 

 
In general, each part of transmission line between two 

grounding points can be modelled as an identical MTL cell. 
In the next sections, we will discuss about the computation 

of the characteristic impedance of periodically grounded 
transmission lines in different cases and adopting different 
approaches. 
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A. Ungrounded single transmission line 

In this section, just to help the reader for further 
comparisons, we recall the classical model of ungrounded 
transmission line, in case of just one wire. Depending on the 
length of the line, it is possible to use a lumped parameters 
approximation or a distributed parameters model. The scheme 
is represented in Fig. 2, not considering the presence of the 
grounding resistor Rg. 

 

 
Fig. 2 Scheme of the single conductor transmission line: (a) problem scheme 
and (b) lumped parameters approximation. 

 
1)  Lumped parameters model  

In case of lumped parameters approximation, the 
transmission line can be represented with a T model as show in 
Fig. 2-b, the horizontal impedances representing the line 
inductance (L) and the vertical one representing the line 
capacitance to ground (C). In this model, the characteristic 
impedance is well-known, frequency independent and equal to 

C/LZ0 =& . 

 
2)  Distributed parameters model 

In case of distributed parameters model, the lumped 
parameters L and C are substituted with the per-unit-length 
inductance l and capacitance c, however the characteristic 
impedance is still a frequency independent value equal to 

c/lZ0 =& . 

 

B. Grounded single transmission line 

Let us consider now the presence of the grounding resistor 
Rg. as effectively shown in Fig. 2.  

 
1) Lumped parameters approximation  

In case of lumped parameters approximation, the L and C 
elements and the grounding resistor Rg can be described 
through a chain matrix (1), where c/lω=ϖ  is the normalized 
frequency, ω  is the angular frequency, l  is the length of a 
single TL cell and c  is the speed of the light in the free space, 

0Z&  is the characteristic impedance of the ungrounded cell. It’s 

worth remembering that, being the TL lossless, the 2c/1lc = . 
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Since the network is semi-infinite, then nCn IZV &=  and 

1nC1n IZV ++ = & , being CZ&  the researched characteristic 

impedance of the whole network. By substituting these 
relationships into (1), whit some tricky manipulation the 
following non-linear algebraic equation is found: 
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In order to have the real part of CZ&  as positive, since the 

network is passive, it is necessary to choose the positive sign 
in (3) for 1≤ϖ . 

This solution is frequency dependent and a-periodical. It is 
quite easy to observe that for Rg going to infinity, the solution 
is again the one in sub-section II.A.1. 

 
2)  Distributed parameters model 

Even if we consider a distributed parameters model, a 
similar can be adopted. The chain matrix (1) becomes  
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By making the same assumptions on the relationships 

between the voltages and the currents as in the previous sub-
section, whit some tricky manipulation the following new 
second-order equation is found: 
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whose solution is 
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In order to have the real part of CZ&  as positive, the negative 

sign in (3) has to be chosen for ( ) ( )n25.1/n25.0 +≤πϖ≤+ , 

the positive otherwise, with n = 1, 2, … 
It is easy to observe that for Rg going to infinity, the solution 

is again the one in sub-section II.A.2. 
The solution (6) is periodical and very different from the (3) 

in terms of general behavior. This means that, even if the 
lumped parameters approximation and distributed parameters 
model have the same characteristic impedance in the 
ungrounded case, there is a relevant difference in case of 
grounding. Since both the models represents the same network, 
this means that the lumped parameters approximation can’t be 
adopted to describe periodically grounded lines, even in the 
case where the lumped model itself is acceptable (i.e. the line 
is short enough). 

 

C. Grounded multiconductor transmission line 

Let us consider now the most complex case, that is to say 
the multiconductor transmission line, as case in which just 
some (eventually all) the conductors are periodically 
connected to the ground [25-27]. So let us consider that the 
transmission line has m conductors, the first s conductors 
being ungrounded and the next p conductors being periodically 
grounded. 

The problem can be formulated considering at first the chain 
matrix of just the ungrounded MTL, that here is 
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Then, it is possible to introduce some modal voltages and 

currents in order to simplify the next calculations and the 
analysis of the system. In our case we consider the modal 

voltages VTV v=~
 and ITI i

~ = , being lc1TT == −1
vi . By 

applying these transformations to (7), the chain matrix in the 
modal domain just becomes: 
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Regarding the grounding, it’s chain matrix can be expressed 

as 
 







+−=

=

+

+

nn1n

n1n

IVGI

VV
 (9) 

 
where G is a an mxm matrix where all the elements are zero 
but the last p ones on the main diagonal, namely Gi,i = 1/Rg 
with i = s+1, …, m. In the modal domain it becomes just 
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being vGTTG 1
v

~ −= . So the chain matrix of the grounded MTL 

cell can be obtained in the modal domain just multiplying the 
chain matrixes, that is to say 
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Now, introducing a characteristic impedance matrix in the 

modal domain and imposing anyway that nCn

~~~
IZV =  and 

1nC1n

~~~
++ = IZV , that it is possible to find the following equation 
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or, for π≠ϖ k , with k = 0, 1, …, in the more compact form 
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This equation, whose appearance recalls (5), is a 

Nonsymmetric Algebraic Riccati Equations (NARE) with 
complex coefficients, the worst cases among the Riccati 
equations [28]. It is not possible to find a closed form solution 
of such a problem and numerical solutions have to be found. 
Hereafter we discuss some efficient methods. 

 
1)  Iterative methods 

Iterative methods are widely used in literature for the 
solution of non-linear problems and some of them are also 
applied to the solution of NAREs [29-30], mainly based on the 
fixed-point or the Netwon-Raphson alghoritm. 

In order to reduce possible convergence problem, it is 
convenient to consider the real and complex part of the 

characteristic impedance (namely CCC

~
j

~~
XRZ += ) and to 

divide the (12) as well, obtaining the two following quadratic 
equations: 
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For both fixed-point and Netwon-Raphson methods, at low 

frequency the ungrounded solution can be a good starting point 
for the iterations. Then, if a frequency sweep is performed, 
adopting as starting point the solution found at the previous 
frequency step and adopting a not so large step frequency, it is 
possible to solve the problem. However, this approach 
requires, in order to find the characteristic impedance at a 
specific frequency, to perform anyway a sweep that, in some 
cases may be highly resource consuming. 

 
2)  Decomposition methods 

Decomposition methods [31-32] are based on the study of 
the Hamiltonian matrix associated to the NARE (13). The 
methods introduce some more mathematical difficulties, 
however allow to directly compute the solution at any 
frequency, without requiring iterations or the determination of 
initial points. 

It is possible to find a solution of (13) by studying the 
Hamiltonian matrix associated to such an equation, that can be 
written as: 
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It can be found that (15) can be always diagonalized for 

π≠ϖ k , by applying normal diagolization techniques or, in 
some more complex situation, requiring to the Jordan 
decomposition, the Schur decomposition or other special 
techniques [33-39]. Then, by analyzing the eigenvalues of 
(15), it can be found that there are: 

� p distinct complex eigenvalues with phase between 0 
and π; 

� p distinct complex eigenvalues with phase always 
between 0 and –π; 

� the real eigenvalue +1 with algebraic multiplicity s; 
� the real eigenvalue –1, with algebraic multiplicity s. 
 
Then, it is possible to sort the eigenvectors’ matrix placing 

in the first s columns the ones corresponding to the eigenvalue 
–1, then the p eigenvectors corresponding to 

� the complex eigenvalues with positive phase if 
k5.0k +≤ϖ≤ , for k = 0, 1, …; 

� the complex eigenvalues with negative phase if 
k1k5.0 +≤ϖ≤+ , for k = 0, 1, …; 

and finally the remaining eigenvectors. 
Let us define with U the corresponding eigenvector matrix, 

sorted according to these rules. It can be written as 
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where each sub-matrix is mxm. It is also found that U11 is 

nonsingular, and the solution of (13) is 
 

1
1121C
−−= UUZ&   . (17) 

 
Inverting the eigenvalues and eigenvectors of H, in some 

cases other solutions are found, in other cases the procedure 
doesn’t lead to a solution since the sub-matrix U11 reveals to 
be not inventible. Among all the possible solution of (13), the 
one obtained with the previously described procedure is the 
only one physical solution. 

It’s worth to observe that the result does not depend on the 
order of the eigenvalues in the sub-matrix U11. So, once the 
good set of eigenvectors is found, any permutation in the first 
m columns of the matrix leads to the same solution. 

III.  FILTERING EFFECT IN THE PERIODICALLY GROUNDED 

TRANSMISSION LINE 

As previously stated, the analysis of the characteristic 
impedance is one of the best way to provide evidence of the 
filtering effect of the periodically grounded transmission line. 

So, let us consider the practical case of a 220 kV power line 
with 3 power conductors (numbered from 1 to 3) and 2 shield 
wires (numbered 4 and 5), as in Fig. 3 [40]. The power 
conductors’ cross section is 150 mm2, the shield wires one is 
50 mm2. In our investigation, we consider a distance between 
the grounding points of l  = 100 m. 

 

 
Fig. 3 Typical supporting tower used in existing 220 kV overhead 
transmission lines (h=26,5 m, H=30,8 m). 

 
In Fig. 4 we show, as example, the real and imaginary parts 

of the term ( )55Z&  (equal to ( )44Z&  due to symmetry reasons) of 

the characteristic impedance matrix in one period, that is to say 
the self-impedance of one of the shield wires. 
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Fig. 4 Coefficient ( )55Z& : plot over an entire period (left hand side) and zoom 

in (right hand side), for different values of the grounding resistance. Distance 
l  = 100 m. 

 

As expected, the real part of the term ( )55Z&  has a maximum 

for k5.0 +=ϖ , with k = 0,1,…, that is to say for 
( )k5.0480f +⋅=  kHz, while for the same frequency the 

imaginary part vanishes. As for a filter, for lower values of the 
grounding resistance, the peak value increases while the width 
of the peak decreases. 

In Figs 5 and 6 we show for a comparison the real and 

imaginary parts of the term ( )11Z&  (equal to ( )33Z& ) due to the 

same symmetry reasons) and ( )22Z&  of the characteristic 

impedance matrix in one period, that is to say the self-
impedance of the power conductors. 

The terms ( )11Z&  and ( )22Z&  exhibits the same behaviour of 

( )55Z& , an it is possible to verify that it is common to all the 

terms of characteristic impedance matrix, also outside the 
diagonal. Although the height of the peak is much lower than 

in ( )55Z& , such a behaviour anyway confirms that the filtering 

effect produced by the periodical grounding appears on all the 
conductors. 

This aspect can be also observed in terms of voltages. 

IV.  4 CONCLUSION 

In this paper, the analysis of multiconductor transmission 
lines has been discussed with particular reference to the effect 
of the periodical grounding. 

At first, it has been shown how the periodical grounding 
affects the calculation of the characteristic impedance, leading 
to the computation of a non-linear algebraic equation. Then, an 
efficient method useful to solve the equations has been shown, 
being efficient and accurate. The proposed method is quite 
general and can be used for similar problems. 
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Fig. 5 Coefficient ( )11Z& : plot over an entire period (left hand side) and zoom 

in (right hand side), for different values of the grounding resistance. Distance 
l  = 100 m. 
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Fig. 6 Coefficient ( )22Z& : plot over an entire period (left hand side) and zoom 

in (right hand side), for different values of the grounding resistance. Distance 
l  = 100 m. 

 
Then, thanks to numerical results of practical cases, the 

filtering effect of the transmission line due to the periodical 
grounding has been shown. Both the frequency behavior of the 
transmission line and voltages in time domain have been 
shown and discussed. 

It’s worth observing that filtering effect of the line depends 
by the distance between the poles, while the ground resistance 
of the shield wire is usually designed to be as small as 
possible. However, in case there is flexibility in choosing the 
position of the (grounded) poles and/or the grounding 
resistance, it is possible to design these two parameters 
properly in order to have some wished filtering effect of the 
line, that may cancel or lower undesired frequencies. 
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