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Filtering properties of periodically grounded
multiconductor power lines

Dario Assante

discussed in literature, can positively enhance the line
Abstract— This paper deals the effect of the periodicaperformance if the grounding is properly designed. Moreover,
grounding of the shield wire in multiconductor power lines. Thit is possible to observe that, even if just the shield wire is

grounding of the shield wire is usually realized in order to preve ounded, the filtering effect occurs on the power conductor
direct lightning of the power wire or the mitigate the induce

overvoltages. However, this operation introduces a filtering property __ . .

in the frequency behavior of the transmission line, which can be Th'§ aspect can be F:Ie.ar!y observed in the freque”?y
clearly observed in the characteristic impedance. It is worth Rehavior of the characteristic impedance. However, even this
observe that, even if the grounding is performed just on the shigd@drameter is affected by the presence of the periodical
wire, the filtering property can be observed also on the phase Wifg$ounding and a proper method to compute has to be adopted,
The paper also shows a methodology to deal with problems mixifig olying the solution of a Non-symmetric Algebraic Riccati
concentrated and distributed parameters equations. Equation (NARE) [7-8]. This kind of equation occurs in

. . . several mathematical and technical problems, so the proposed
Keywords—Transmission lines, characteristic impedance, Non- P prop

symmetric Algebraic Riccati Equation, ladder network, solution can be useful for a broad class of problems [9-17].
Finally yet importantly, the considered model involves both
|. INTRODUCTION distributed and concentrated parameters elements. This is a

?mplex situation, appearing in different kind of problems [18-

OWER transmission lines are essential components of . . . .
P P %] and the proposed method is valuable by this point of view,

the modern electric and electronic systems. Its analysis i
classical electromagnetic topic [1-3] and is included in severa’:
academic courses. In these cases, the transmission line isII
usually modeled as an infinite set of conductor of different
cross-section, eventually interfering with some media. This The reference problem is shown in Fig. 1: a multiconductor
configuration easily allows to define and evaluate sqee transmission line (MTL) has several conductors, and part of
unit length parameters (inductance, capacitance, resistandgpm are periodically connected to ground through a specific
and to model the transmission line in terms of equivaleféSistance.
circuits. In this model, an essential parameter is represented by
the characteristic impedance of the line, defined as the value‘ofi*
impedance to use as termination of the transmission line jn i,
order to make it looking like an infinite one, i.e. there are ne— :
reflection at the termination. - p grounded wires

In some practical situation, some conductors may be
grounded in order to improve the line performance [4-5]. In T
power lines, the shield wire may be periodically connected to MTL cell
ground, aiming at intercepting the (direct) lightning strokes
and avoiding the fault of the line due to an excessive
overvoltage on the power wires. In distribution Iines',:ig- 1 Scheme of the MTL cells with the periodical grounding.
periodically grounded shield wires may be still useful reducing o ]
induced voltages from external electromagnetic fields caused" 9eneral, each part of transmission line between two
by indirect lightning [6]. grounding points can be mod_elle_d as an identical MTL cell. _

In these cases, the periodical grounding has an additional” the next sections, we will discuss about the computation
consequence in the line behavior, that is a filtering effect 8 the characteristic impedance of periodically grounded

specific predictable frequencies. This aspect, not adequatgﬁnsmisﬁion lines in different cases and adopting different
approaches.

COMPUTATION OF THE CHARACTERISTIC IMPEDANCE

: snon-grounded wire
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A. Ungrounded single transmission line
In this section, just to help the reader for further .
comparisons, we recall the classical model of ungrounded Vn+1:(1_m2/2)vn_jwzo(l_w2/4)ln
transmission line, in case of just one wire. Depending on the [1_(32/2 _ w}
1T t)= Vn+ (1)

length of the line, it is possible to use a lumped parameters —s
o o R Z,
approximation or a distributed parameters model. The scheme 9

is represented in Fig. 2, not considering the presence of the . (1-w?/4 /2
+|1+jwZ, +j—= [

grounding resistor

g 0

In‘ ST In+1 |n+1

Iy
Rl iV nnE Since the network is semi-infinite, thex  =Z . and

V.,,=Zd,.,, being Z. the researched characteristic

impedance of the whole network. By substituting these
relationships into (1), whit some tricky manipulation the
following non-linear algebraic equation is found:

() (b)

Fig. 2 Scheme of the single conductor transmission line: (a) problem scheme 5 N L\ -
and (b) lumped parameters approximation. (1— W+ R, /ZO)ZC - ijO(Z— w )(ZC + Rg): 0 (2
1) Lumped parameters model whose solution is

In case of Ilumped parameters approximation, the
transmission line can be represented with a T model as show in w7 (2—(1)2)
Fig. 2-b, the horizontal impedances representing the line Z. = 2° - — £
inductance (L) and the vertical one representing the line 2(1—111 +lnglzo)
capacitance to ground (C). In this model, the characteristic \/}D'Z@(Z—mz)(z—m% jZI)Rg/ZO)(j(IJZO+2Rg)
impedance is well-known, frequency independent and equal to+

. N-w®+ jwR /7
Z,=+LIC. -0 + JOR, /2,

2) Distributed parameters model In order to have the real part &, as positive, since the

In case of distributed parameters model, the lumpedwetwork is passive, it is necessary to choose the positive sign
parameters L and C are substituted with the per-unit-length(3) for m<1.
inductance | and capacitance c, however the characteristicThis solution is frequency dependent and a-periodical. It is
impedance is still a frequency independent value equal qoite easy to observe that fog §oing to infinity, the solution
z, =Jllc. is again the one in sub-section II.A.1.

®3)

2) Distributed parameters model
B. Grounded single transmission line Even if we consider a distributed parameters model,

Let us consider now the presence of the grounding resisgifnilar can be adopted. The chain matrix (1) becomes
Rg. as effectively shown in Fig. 2.

1) Lumped parameters approximation _ e

In case of lumped parameters approximation, the L and C —cos(m)vn jZOSIH((I))In
elements and the grounding resistos &n be described _ [Cos(m)+'sm(w)]v
T : n

\Y/

n+l
through a chain matrix (1), whem = w// ¢ is the normalized R 7 )
. . g 0
frequency, « is the angular frequency, is the length of a .
single TL cell andc is the speed of the light in the free space, +[jﬁ sir(w)+cos(w)}l
R n

Z0 is the characteristic impedance of the ungrounded cell. It's

g

worth remembering that, being the TL lossless, ltvel/c? .

By making the same assumptions on the relationships
between the voltages and the currents as in the previous sub-
section, whit some tricky manipulation the following new
second-order equation is found:
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27 colw)+ R sir@))- [z.+ R )Zsinw)=0 () {mevn o

|
whose solution is

whereG is a anmxm matrix where all the elements are zero

iz i\/4j2) R, co(w)—(Zé + 4R§) but the lastp ones on the main diagonal, namely & 1/R,
c= Z(ZO cotlw)+ R ) (6)  withi=s+1, ..., m. In the modal domain it becomes just
g
: . . Vo=V,
In order to have the real part &@. as positive, the negative - o (10)
sign in (3) has to be chosen f0r05 2)<w i< (15+ 2n), by =GV, + 1,

the positive otherwise, withn =1, 2, ... _
It is easy to observe that fog Boing to infinity, the solution beingG =T,*GT, . So the chain matrix of the grounded MTL
is again the one in sub-section II.A.2. cell can be obtained in the modal domain just multiplying the
The solution (6) is periodical and very different from the (3g¢hain matrixes, that is to say
in terms of general behavior. This means that, even if the
lumped parameters approximation a_nd_ dis_tributed pargmeterS{v L =co 5((1))\7 _ jsin(m)l~
model have the same characteristic impedance in thel_" n L' - o
ungrounded case, there is a relevant difference in case of{ ! :‘[‘305(55)(3“L jsin(m)l]\/n +[jsin(m)G +005(m)1]|n
grounding. Since both the models represents the same network, (11)
this means that the lumped parameters approximation can’t be

adopted to describe periodically grounded lines, even in theNow, introducing a characteristic impedance matrix in the

case where the lumped model itself is acceptable (i.e. the "r'ﬁ%dal domain and imposing anyway thﬁl;q =7 7 and
is short enough). en

\Y no-lzZCTnﬂ’ that it is possible to find the following equation

C. Grounded multiconductor transmission line -

Let us consider now the most complex case, that is to sayZC
the multiconductor transmission line, as case in which just

codw)G + jsin@h )z, - jsin@)z.G+1)=0  (12)

some (eventually all) the conductors are periodicallyf, for @#km, withk=0, 1, ..., in the more compact form
connected to the ground [25-27]. So let us consider that the N N

transmission line hasn conductors, the firss conductors Zc(l‘ jCO‘(w)G)Zc‘ZcG‘lzo (13)
being ungrounded and the n@xtonductors being periodically

grounded. This equation, whose appearance recalls (5), is a

The prgblem can be formulated considering at first the chalfpnsymmetric Algebraic Riccati Equations (NARE) with
matrix of just the ungrounded MTL, that here is complex coefficients, the worst cases among the Riccati
_ . o equations [28]. It is not possible to find a closed form solution
Vo :cos(w)vn - jsin(w)Z oln 7 of such a problem and numerical solutions have to be found.
T .= —jsin(m)Z N +cos(w)l_n ) Hereafter we discuss some efficient methods.

i . . 1) Iterative methods
Then, it is possible to introduce some modal voltages andyierative methods are widely used in literature for the

currents in order to simplify the next calculations and th§olution of non-linear problems and some of them are also

analysis of the system. In our case we consider the modgjieq to the solution of NARES [29-30], mainly based on the
voltagesV =T,V and | =T,I, being T, =T;*=1Jc’ . By fixed-point or the Netwon-Raphson alghoritm.
applying these transformations to (7), the chain matrix in the In order to reduce possible convergence problem, it is

modal domain just becomes: convenient to consider the real and complex part of the
characteristic impedance (hamel/.=R_.+jX.) and to
\~/n+1 = cos(w)\7n - jsin(w)rn divide the (12) as well, obtaining the two following quadratic
{TM =- jsin(m)\7n + cos(w)rn equations:
Regarding the grounding, it's chain matrix can be expressed cos(m)(? ER S_Z( “G>~(°)~Z° o (13)
as +sin(w)RCXC+XCG—XCRC):0
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_ (i -~ = )_ (14) where each sub-matrix isxm. It is also found thati; is
+sin@)R R~ XX~ R.G-1)=0 nonsingular, and the solution of (13) is
For both fixed-point and Netwon-Raphson methods, at low Zc =-U, U (17)

frequency the ungrounded solution can be a good starting point
for the iterations. Then, if a frequency sweep is performed,I ting the ei | d ei torsHofi
adopting as starting point the solution found at the previous nverting the eigenvalues and eigenvectorstiotin some

frequency step and adopting a not so large step frequency, fases other solutions are found, in other cases the procedure

possible to solve the problem. However, this approazﬁ?esntt. Ieadt'tgl a zolutlon T;Tﬁe the Sglbmallﬂitx revialfsto th
requires, in order to find the characteristic impedance at & nobltn\./endl gt'h trrr:ong al e|p0d55| ng((Jju 'on Od( ).’ ﬂ?
specific frequency, to perform anyway a sweep that, in somge ovtaned wi € previously described procedure IS the

. : only one physical solution.
cases may be highly resource consuming.
4 gny g It's worth to observe that the result does not depend on the

2) Decomposition methods order of the eigenvalues in the sub-matdx. So, once the

Decomposition methods [31-32] are based on the study g)qod set of eigenvectprs is found, any permuta}tion in the first
the Hamiltonian matrix associated to the NARE (13). The! columns of the matrix leads to the same solution.
methods introduce some more mathematical difficulties,
however allow to directly compute the solution at any
frequency, without requiring iterations or the determination of
initial points. As previously stated, the analysis of the characteristic

It is possible to find a solution of (13) by studying thédmpedance is one of the best way to provide evidence of the
Hamiltonian matrix associated to such an equation, that canfi@ring effect of the periodically grounded transmission line.

Ill.  FILTERING EFFECT IN THE PERIODICALLY GROUNDED
TRANSMISSION LINE

written as: So, let us consider the practical case of a 220 kV power line
with 3 power conductors (numbered from 1 to 3) and 2 shield
G 1- jcot(m)é wires (numbered 4 and 5), as in Fig. 3 [40]. The power
H :[ ] (15) conductors’ cross section is 150 frthe shield wires one is
1 0 50 mn?. In our investigation, we consider a distance between

the grounding points of =100 m.
It can be found that (15) can be always diagonalized for
w# kmt, by applying normal diagolization techniques or, in " 11,20 ”
some more complex situation, requiring to the Jordan m, T R
decomposition, the Schur decomposition or other special ) y / -
techniques [33-39]. Then, by analyzing the eigenvalues of ] l ]-
(15), it can be found that there are: ‘
= p distinct complex eigenvalues with phase between 0
andm; ) :
= p distinct complex eigenvalues with phase always I [ :i
between 0 andzw: [ =
= the real eigenvalue +1 with algebraic multiplicity ﬂ ||
= the real eigenvalue —1, with algebraic multiplicty / |||

I
Then, it is possible to sort the eigenvectors’ matrix placing [ | J |
. X . X |
in the firsts collumns the ones corresppndlng to the elgenvall]gleg_ 3 Typical Suppon—'—'—ing tower used in existing 220 kV overhead
-1, then thep eigenvectors corresponding to transmission lines (h=26,5 m, H=30,8 m).

= the complex eigenvalues with positive phase if
ksw<05+k, fork=0, 1, ...; In Fig. 4 we show, as example, the real and imaginary parts

* the complex eigenvalues with negative phase §f the termZ ., (equal toZ,, due to symmetry reasons) of
05+k<w<l+k,fork=0,1, ...;
and finally the remaining eigenvectors.
Let us define withJ the corresponding eigenvector matrix,
sorted according to these rules. It can be written as

u, U
u:( H nJ . (16)
U21 U22

the characteristic impedance matrix in one period, that is to say
the self-impedance of one of the shield wires.
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Fig. 5 Coeﬂicientz(u): plot over an entire period (left hand side) and zoom
Fig. 4 CoefficientZ(SS): plot over an entire period (left hand side) and zoonin (right hand side), for different values of the grounding resistance. Distance

in (right hand side), for different values of the grounding resistance. Distanée= 100 m.
¢ =100 m.

Detail
15000 15000 -

As expected, the real part of the teﬁ@s) has a maximum 1

for w=05+k, with k = 0,1,..., that is to say for i !

———q---Lb-— 10000
|
|
|

f= 48(]:@05+ k) kHz, while for the same frequency the 5000 - -
imaginary part vanishes. As for a filter, for lower values of the ! |

Y —

| |
1 1
grounding resistance, the peak value increases while the width % ,025 05 075 1 848 049 05 o051 052

of the peak decreases. 1220 ‘ ‘ 1 X10 ‘ ‘
In Figs 5 and 6 we shqw for a compgrison the real and Olsi'ngTfW” R _ 7"1“"79‘1‘6‘7'{7 ;
imaginary parts of the ternz,, (equal toZ ;) due to the l 1
. oF—— - SPE— 1
same symmetry reasons) and, of the characteristic 1 1
e P e ——
impedance matrix in one period, that is to say the self- | | |
impedance of the power conductors. 1 o o5 o 1
wiT wiT

The termsZ,, and Z,, exhibits the same behaviour of

[—R=10Q R=100 — R=100Q]

2(55), an it is possible to verify that it is common to all the L , . )
Fig. 6 CoefficientZ ,, : plot over an entire period (left hand side) and zoom

te.rms of characteristic impedance matrix., also outside th\e(right hand side), for different values of the grounding resistance. Distance
diagonal. Although the height of the peak is much lower than= 100 m.

in 2(55), such a behaviour anyway confirms that the filtering

effect produced by the periodical grounding appears on all theThen’ thanks to numerlcql _resul_ts of practical cases, the
conductors. filtering effect of the transmission line due to the periodical

This aspect can be also observed in terms of voltages. grounding has been shown. Both the frequency behavior of the
transmission line and voltages in time domain have been
shown and discussed.

It's worth observing that filtering effect of the line depends

_ In this paper, the analysis of multiconductor transmissiqyl, yhe distance between the poles, while the ground resistance
lines has been discussed with particular reference to the effgf:tthe shield wire is usually designed to be as small as

of the periodical grounding. possible. However, in case there is flexibility in choosing the

At first, it has been shown how the periodical groundinggition of the (grounded) poles and/or the grounding
affects the calculation of the characteristic impedance, leadifisiance it is possible to design these two parameters

to the computation of a non-linear algebraic equation. Then, Bfbperly in order to have some wished filtering effect of the
efficient method useful to solve the equations has been shoy\jRa that may cancel or lower undesired frequencies.

being efficient and accurate. The proposed method is quite
general and can be used for similar problems.

IV. 4 CONCLUSION
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